EVALUATION OF OLIVE-ORCHARD SOILS OF MAP PAGE (948) (TORRES, SE SPAIN)
Menjivar, J. C1.; Aguilar, J2.;
Garc’a, I2; Bouza, P3
1. Escuela de Agr—nomos. Universidad de
Tegucigalpa (Honduras)
2. Dpto de Edafolog’a y Qu’mica Agr’cola.
Facultad de Ciencias. Univ. de Granada
3. Centro Nacional Patag—nico. CONICET.
Puerto Madryn, Chabut (Argentina)
Introduction
Map
page 948 (Torres) represents an area of 54.344 ha in south-eastern Spain
(province of JaŽn) and includes the Betic Cordillera. The releif is varied, with
a mountainous zone (55% of the area), hilly (22%), old and recent floodplain
(12%) and the rest badlands (11%).
The temperature regime of the soils ranges from mesic to thermic and moisture
regime is xeric (Soil Survey Staff, 1975). The natural vegetation is within the
Mediterranean Region, Betic corological province and Subbetic sector (Rivas
Mart’nez, 1997).
Nevertheless, most of the land in cultivated with olive orchards (variety
Picual), the aim of the present study being to evaluate the use capacity of
these soils.
Materials and Methods
A
total of 35 soil profiles were selected to be described macromorphologically
and classified according to the FAO (1977, 1998). The analyses made were:
organic carbon (Tyurin 1951); carbonates (Barahona, 1984); texture, by the
pipette of Robinson (Soil Conservation Service, 1972); bases and exchange
capacity by ammonium acatate (1N, pH= 7,0) and sodium acetate (1N pH= 8,2); pH
in soil:water suspension 1:2,5; total nitrogen (Bouat and Crouzet, 1965);
bioavailable phosphorus (Olsen et al., 1965). Leaf analysis followed the Study
of Analytical Techniques for Leaf Diagnosis (ComitŽ Inter-Centros, 1968).
To study the use capacity, we followed 6
different methodologies: a) Agricultural Capacity Classification (Klingebiel et
Montgomery, 1961); b) Evaluation System of Agricultural Productivity of the FAO
(Riquier, Bramao et Cornet, 1970); c) FCC System modified by S‡nchez (1982); d) System for Land Evaluation ( FAO, 1976);
e) Specific System for Olive Orchards (Aguilar et al., 1995); f) Land Evaluation (Sys et al., 1993 ).
Results and Discussion
The
soils of olive orchards studied were highly varied, the typologies in
descending order of abundance: Calcaric Regosols, Calcaric Cambisols, Haplic
Calcisols, Endopetric and Hypercalcic Calcisols, Calcaric Leptosols, Epipetric
Calcisols, Chromic Luvisols and
Vertic Cambisols.
The method of Agricultural Capacities
(Klingebiel y Montgomery, 1961), in which the degree of erosion and topsoil
depth are the primary characteristics, reflects that none of the soils belong
to Class I (unlimited use), only 2,9 % pertain to Class II, and most (65,7%)
belong to Classes V and VI, these having limited agricultural use. In the
Agricultural Productivity System of the FAO (Riquier, Bramao y Cornet, 1970),
in which the main characteristics include available moisture, topsoil depth and
nutrient availability, no soils pertained to Class I, 14,3% belonged to Class
II (fundamentally Cambisols and Luvisols) and 48,6% belonged to Class IV an V
(predominanthy Leptosols, Regosols and Calcisols).
In the FCC System (Buol, 1975) no soil
was exempt of limitations for agricultural use. The most frequent limiting
physical and chemical properties were: moisture availability, potassium
deficiency, high CaCO3 content (>30%), and sharp slopes. In this
classification, as in the System for Land Evaluation (FAO), most of the soils
fall into Class N1 (unsuitable for current cultivation, but for which the
limitations could be solved at high cost).
According to the Specific System for
Olive Orchards (Aguilar et al., 1995), as in all the above evaluations, no soil was free of
limitations; in this case low rainfall, steep slopes, shallow topsoil, high
CaCO3 content, low organic matter content, and reduced exchange
capacity were the major limiting factors which are difficult to correct.
Meanwhile nutrient deficiency is easily remedied.
References
Aguilar, J.; Fern‡ndez, J.; Fern‡ndez, E.; Haro, S.; Mara–Žs, A. Y
Rodr’guez, T. 1995. El olivar Jienense. Pub. de la Universidad de JaŽn 94p
Barahona, E. Et
al. 1984. determinaciones anal’ticas de suelos. Normalizaci—n de mŽtodos. IV.
Determinaci—n de carbonatos totales y caliza activa. Actas del Congreso
Normalizaci—n de la Ciencia del Suelo, I, 53-67. Madrid.
Bouat, A. y Crouzet, C. 1965. Notes
thecniques sur un appareil semi-automatique de
dosage de l,azote (et de certains
composee volatils). Ann. Agron. 16,
(1). 107-18
Buol,
S.W.; S‡nchez, P.A.; Cate, R.B.; y Granger, M.A. 1975. Soil Fertility
Capability
Classification.
Soil. Man. In Trop. Am . Soil. Sic. Pet. North Caroline. St. Univ.
Raleing.
EE.UU.
C.
SYS.; Van Ranst.; J.Debabeye.; and F. Beernaert. 1993. Land evaluation. Part.III.
Crop
requirements. General
Administration for Developmet Cooperation. Brussels-
Belgium.
ComitŽ Inter Centros para el Estudio de TŽcnicas
Anal’ticas de Diagn—stico Foliar.
1968. Anales de Edaf y Agrobiol. T XXVII. No 5-6. 409 pp.
FAO.
1976. Esquema para la Evaluaci—n de Tierras. Bolet’n de suelos. 32. Roma.
Italia.
FAO. 1977. Gu’a para la descripci—n de perfiles de
suelos. Roma. 70 pp.
Klingebiel,
A.A. and Montgomery, P.H. 1961. Land Capability Classification. U. S.
Depart.
Of Agriculture. Soil. Cons. Serv. Handbook.210. Washington. EE.UU.
Olsen, S.R. and Dean, L.A. 1965. Phosphorus. En C.A. Black, Ed. Methods of Soil
Analysis, part. II: 1034-1045. Amer. Soc. Agronomy. Inc. Madison, Wisconsin. U.S.A.
Riquier, J. Bramao, D.L. and Cornet, S. P. 1970. A new
system of soil appraisal in
terms of actual and potential productivity. Roma. FAO A.G.L TERS 70/6. 38.pp.
Rivas
Mart’nez. 1997. Biogeographical synthesis of Andalusia. Journal of
Biogeography
24, 915-928.
S‡nchez,
P.A. 1982. The Fertility Capability Classification System. Geoderma. 27,
283-309.
Soil Conservation Service. 1972. Soil Survey Laboratory. Methods and
procedures for collecting soil
samples. Soli Survey Repor 1.
U.S.D.A. Dept. Agric. Washington.
Tyurin,
I. V. 1951. Analytical procedure
for a comparative study of soil humus. Trudy.
Pochr. Inst. Dokuchaeva. 38,5 ( Descrito por Kononova
1961).